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Notations & Concepts

▶ Graph G = (V,E,X,Y) with node set V, edge set E, node input features
X ∈ Rn×p and node labels Y ∈ Rn.

▶ A,D are the adjacency matrix and the degree matrix of G.
▶ Self-loop: Ã = A+ I, D̃ = D+ I.
▶ Graph Laplacians

▶ RandomWalk Graph Laplacian: Arw = D̃−1Ã
▶ Symmetric Graph Laplacian: Ā = D̃−0.5ÃD̃−0.5

▶ Graph Topology
▶ Homophily: nodes from same classes are more likely to connect.
▶ Heterophily: nodes from different classes are more likely to connect.
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▶ Symmetric Graph Laplacian: Ā = D̃−0.5ÃD̃−0.5
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Preliminaries
▶ Message-Passing Neural Network (MPNN)

A L-layer MPNN initializes the embedding h(0) = X. At each iteration l, the
embedding of node i is updated as

h(l)
i = ϕ

h(l−1)
i ,

∑
j∈N (i)

ψ(h(l−1)
i ,h(l−1)

j )

 ,

where ϕ, ψ are the update and message functions, andN (i) denotes the
neighbors of node i.
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h(l)
i = ϕ

h(l−1)
i ,

∑
j∈N (i)

ψ(h(l−1)
i ,h(l−1)

j )

 ,

▶ Graph Convolution Network (GCN): h(l) = σ(Āh(l−1)W(l−1)).
▶ Simple Graph Convolution (SGC):

h(L) = Āh(L−1)W(L−1) = ĀLX
(
W(L−1) . . .W(0)

)
.

where σ is nonlinear activaton function, and ψ(i, j) = 1√
deg(i) deg(j)

W(l−1)h(l−1)
j .
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Over-smoothing Problem

▶ SGC: h(L) = Āh(L−1)W(L−1) = ĀLX
(
W(L−1) . . .W(0)

)
= ĀLXW.

▶ Over-smoothing

Assume the graph has one connected component. Then

lim
L→∞

AL
rwX = [1n; , . . . , 1n]; lim

L→∞
ĀLX = D−1[1n; , . . . , 1n].

▶ Only encodes connected component and degree information;
▶ Miss the community structure present in subsequent eigenvectors.
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Over-squashing Problem

▶ Over-squashing
Let h(L)i = h(L)i (x1, . . . , xn) be the output for node i of a L-layer MPNN with
input features {xi}ni=1. Then the over-squashing effect (for node i with respect

to node s) is measured by the Jacobian ∂h(L)i /∂xs.
▶ The smaller the Jacobian value, the more node feature information is

“squashed” out in the embedding.
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Related Work

▶ Borrow optimization techniques from training standard neural
networks
Adapt normalization techniques from deep learning and propose node-wise,
batch-wise, and graph-wise normalization methods.

▶ Inject global information in MPNNs
▶ Encode global properties of the graph as inputs to MPNNs: using spectral

embeddings as node features, sampling anchor nodes, or using other low-pass
geometric features.

▶ Use specific architectural choices: residual connections, attention mechanisms,
or transformers.

▶ Modify the graph structures with increasingly complicated
architectures
To speed up the long-range information flow: graph sparsification, graph
sampling, or localized subgraph extraction.
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PowerEmbed

Algorithm 1 PowerEmbed

Require: a graph operator S ∈ Rn×n, node features X ∈ Rn×k, a list P = [X].
Initialize:

U(t) = X
for t = 0 to L-1 do

Ũ(t+ 1) = SU(t) [message-passing]
U(t+ 1) = Ũ(t+ 1)[Ũ(t+ 1)⊤Ũ(t+ 1)]−1 [Normalization]
Append U(t+1)

∥U(t+1)[:,k]∥ to P [Column normalization]
end for
return P

If X is full (column) rank and the k-th and (k+ 1)-th eigenvalues of S are distinct,
then the last iterate U(t+ 1) from PowerEmbed converges to the top k
eigenvectors of S when t → ∞ (up to an orthogonal transformation in O(k)).
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PowerEmbed

Figure 1: PowerEmbed extracts both local features from the first few iterations and global
information from the last few iterations (i.e., the top-k eigenvectors), which are jointly
learned using the inception network.
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Numerical Experiments - Baselines

▶ Unnormalized counterparts: using intermediate representations
▶ SIGN (scalable inception GNN): Arw
▶ SGC(Incep): Ā

▶ Spectral methods
Spectral decomposition of the graph A and the covariance matrix XX⊤:
A = USU⊤,XX⊤ = ŨΣŨ⊤

▶ ASE: hASE = Uk
▶ Cov(X): hcov(X) = Ũk
▶ A_X: hA_X = [hASE;hcov(X)]

▶ Semi-supervised MPNNs
▶ Benchmark: GCN, GAT (graph attention network)
▶ Long-range spatial information: GEOM-GCN (geometric GCN), GPR-GNN

(generalized page-rank GNN), and GCNII (GCN via initial residual and identity
mapping)
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Numerical Experiments - Synthetic Graphs

▶ Stochastic Block Model (SBM)
A graph A with n nodes is a random SBM graph if it is sampled as

A ∼ Bernoulli(P), P = ZBZ⊤,

where Z ∈ Rn×K is a membership matrix such that Zi,k is 1 if the i-th node
belongs to the k-th class, ∥Zi,·∥1 =

∑K
k=1 |Zi,k| = 1, and B ∈ [0, 1]K×K is a

full-rank matrix representing the block connection probability.
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Numerical Experiments - Synthetic Graphs

▶ 2B-SBMwith Gaussian node features
A two-block symmetric SBM (2B-SBM) is given by:

Zi,· =

{
[1, 0] if i ∈ [n/2]

[0, 1] otherwise.
, B =

[
p q
q p

]
,

where p, q ∈ (0, 1),p ̸= q. The node features in block k ∈ {0, 1} are sampled
from am-dimensional multivariate GaussianN (µk,Σk) and stored in a node
feature matrix X ∈ Rn×m.

▶ 2B-SBMmodel without node features
1. P = E(A) has three eigenvalues, ranked by magnitude as (p+ q)/2, (p− q)/2, 0,

where 0 has multiplicity n− 2.
2. The leading eigenvector is a constant vector, whereas the second eigenvector

u2(P) = [1n/2;−1n/2] reveals the community structure.
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Numerical Experiments - Synthetic Graphs
▶ Convergence of estimated eigenvectors
Settings: 2 Gaussians with mean µ0 = [1, 1], µ1 = −µ0, binary node
classification, n = 500 nodes, 10/90 train/test split, k = 2.

Figure 2: Convergence of the estimated eigenvectors ûi from Algorithm 1 is faster for
denser graphs and slower for sparse graphs. We report the angles between the true
top-2 eigenspaces and estimated top-2 eigenspaces, averaged over 30 random runs.
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Numerical Experiments - Synthetic Graphs
▶ Comparison with baselines

Figure 3: PowerEmbed enjoys the same performance guarantee as spectral embedding
methods in dense graphs (left), and outperforms spectral methods in sparse graphs
(right). Standard MPNNs suffer from over-smoothing (e.g., “GCN-10”) and perform
much worse in sparse heterophilous graphs (e.g., “GCN-5”).
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Numerical Experiments - Synthetic Graphs

Figure 4: Supplementary to Figure 3 on other baselines: the last iterate of PowerEmbed
perform well in dense graphs (both homophily and heterophily), but fail in sparse graphs,
similar to spectral embedding (“ASE”). Standard MPNNs suffer from over-smoothing
(“SGC-10”, “GCN-10”). MPNNs encode long-range information can go deeper (“GCNII”,
“GPR-GNN”), albeit with higher variance.
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Numerical Experiments - Synthetic Graphs

Figure 5: Performance w.r.t graph density changes in 2B-SBMmodel:
p = 1/2× X-axis, q = 1/3× X-axis.

▶▶▶▶ As density decreases, the performance of “ASE” and Power-last-iter (second row)
degrade significantly, while shallow MPNNs degrade more gracefully.

▶ Deep MPNNs completely fail, while deep Power-last-iter are more resilient.

▶ PowerEmbed and SGC(Incep) that use a list of intermediate embeddings perform
consistently well in sparse graphs, robust to the choice of number of layers.
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Numerical Experiments - Real-world Graphs - Heterophily

Table 1: PowerEmbed outperforms other baselines on graphs with heterophily, particularly
on dense heterophilous graphs.

Graph Squirrel Chameleon Wisconsin Texas Cornell
Density 38.16 13.8 1.86 1.61 1.53

Homophily 0.22 0.23 0.21 0.11 0.3
#Nodes 5,201 2,277 251 183 183
#Edges 198,493 31,421 466 295 280
#Features 2,089 2,325 1,703 1703 1,703
#Classes 5 5 5 5 5
Power-10 53.53 ± 0.41 64.98 ± 0.55 74.71 ± 1.74 73.51 ± 2.05 75.14 ± 2.50

Power(RW)-10 44.58 ± 0.52 61.64 ± 0.43 75.49 ± 1.71 75.68 ± 1.21 72.97 ± 1.58
Power(Lap)-10 42.32 ± 0.37 62.17 ± 0.41 74.71 ± 1.74 74.05 ± 2.10 77.03 ± 1.54

Power-2 52.13 ± 0.55 64.47 ± 0.76 75.29 ± 1.47 79.19 ± 1.33 76.76 ± 1.63
Power(RW)-2 45.92 ± 0.48 59.67 ± 0.62 77.45 ± 0.89 76.22 ± 1.31 75.41 ± 1.85
Power(Lap)-2 43.06 ± 0.56 60.00 ± 0.62 78.43 ± 1.59 77.03 ± 1.54 78.30 ± 1.58
SGC(Incep)-10 37.07 ± 0.55 55.11 ± 0.82 75.29 ± 1.04 75.68 ± 1.95 75.68 ± 1.83

SIGN-10 38.47 ± 0.42 60.22 ± 0.72 75.29 ± 1.45 73.51 ± 2.02 75.68 ± 1.21
SGC(Incep)-2 35.33 ± 0.35 54.19 ± 0.65 77.45 ± 0.89 76.76 ± 1.34 76.22 ± 2.07

SIGN-2 40.97 ± 0.35 60.11 ± 0.97 78.43 ± 1.41 75.14 ± 2.02 76.76 ± 1.34
Cov(X) 33.12 ± 0.53 44.74 ± 1.00 75.69 ± 1.25 77.30 ± 1.12 77.03 ± 2.27
ASE 41.46 ± 0.62 57.92 ± 0.77 49.41 ± 2.09 58.65 ± 1.79 56.76 ± 0.66
A_X 49.11 ± 0.37 61.97 ± 0.76 77.84 ± 1.24 76.76 ± 1.22 75.95 ± 2.28
GCN∗ 23.96 28.18 45.88 52.16 52.7
GAT∗ 30.03 42.93 49.41 58.38 54.32

Geom-GCN∗ 38.14 60.9 64.12 67.57 60.81
GCNII-10 35.23 ± 0.50 49.96 ± 0.46 59.02 ± 1.60 61.08 ± 1.49 48.38 ± 1.64

GPR-GNN-10 34.51 ± 1.45 52.37 ± 3.43 59.41 ± 2.75 58.92 ± 2.98 52.97 ± 3.11
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Numerical Experiments - Real-world Graphs - Heterophily
▶ Increasing the number of message-passing layers

Figure 6: PowerEmbed (annotated with “_norm”) that adds the normalization step for
orthogonality can expressive top-k eigenvectors, which avoids over-smoothing and
outperforms other baselines, particularly in heterophilous graphs. Baselines include
unnormalized counterparts (SIGN denoted as “RW”, SGC(Incep) denoted as “Lap”);
spectral methods, and semi-supervised MPNNs.
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Numerical Experiments - Real-world Graphs - Homophily

Table 2: PowerEmbed achieves competitive performance as other MPNN baselines.

Graph Computers Photo Coauthor(CS) Cora Citeseer
Density 35.76 31.13 8.93 1.95 1.41

Homophily 0.8 0.85 0.83 0.81 0.74
#Nodes 13,752 7,650 18,333 2,708 3327
#Edges 491,722 238,162 163,788 5,278 4676
#Features 767 745 6,805 1,433 3703
#Classes 10 8 15 7 6
Power-10 90.34 ± 0.22 93.84 ± 0.17 93.93 ± 0.11 81.69 ± 0.50 69.67 ± 0.63

Power(RW)-10 91.14 ± 0.19 94.16 ± 0.20 93.88 ± 0.13 85.03 ± 0.44 73.15 ± 0.54
Power(Lap)-10 91.20 ± 0.14 93.97 ± 0.19 94.26 ± 0.09 84.95 ± 0.40 72.61 ± 0.51

Power-2 90.85 ± 0.15 94.04 ± 0.21 94.32 ± 0.11 81.23 ± 0.52 72.03 ± 0.41
Power(RW)-2 91.43 ± 0.13 94.56 ± 0.19 94.30 ±0.08 83.56 ± 0.44 72.62 ± 0.48
Power(Lap)-2 91.33 ± 0.15 94.58 ± 0.21 94.75 ± 0.09 83.52 ± 0.27 73.27 ± 0.75
SGC(Incep)-10 90.61 ± 0.16 94.65 ± 0.18 94.44 ± 0.10 84.89 ± 0.71 73.39 ± 0.62

SIGN-10 90.65 ± 0.18 94.63 ± 0.25 94.05 ± 0.13 85.45 ± 0.32 72.78 ± 0.51
SGC(Incep)-2 90.97 ± 0.17 94.47 ± 0.22 94.54 ± 0.08 83.74 ± 0.53 72.47 ± 0.61

SIGN-2 90.89 ± 0.20 94.59 ± 0.19 94.09 ± 0.12 83.92 ± 0.43 73.27 ± 0.53
Cov(X) 82.42 ± 0.14 89.45 ± 0.26 91.70 ± 0.15 69.24 ± 0.56 66.79 ± 0.62
ASE 77.61 ± 0.20 85.84 ± 0.22 75.24 ± 0.21 72.84 ± 0.48 51.73 ± 1.67
A_X 89.97 ± 0.21 94.22 ± 0.22 93.69 ± 0.13 80.89 ± 0.56 69.84 ± 0.71
GCN∗ 90.49 93.91 93.32 85.77 73.68
GAT∗ - - - 86.37 74.32

Geom-GCN∗ - - - 84.93 75.14
GCNII-10 90.75 ± 0.16 93.86 ± 0.18 94.32 ± 0.26 84.14 ± 0.47 72.17 ± 0.66

GPR-GNN-10 87.62 ± 0.85 93.52 ± 0.39 94.81 ± 0.27 85.77 ± 0.67 73.22 ± 0.73
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Conclusion

▶ Augment the MPNN with a simple normalization step
Express the top-k eigenvectors of the graph operator, which is agnostic to the
graph topology (homophoily or heterophily).

▶ Couple PowerEmbed with an inception network
Learn the rich representations that interpolate from localmessage-passing
features to global spectral information, which provably avoids
over-smoothing and over-squashing.

▶ Perform comprehensive studies to show PowerEmbed’s superiority
Demonstrate numerically that our simple techniques achieve competitive
performance for node classification in a wide range of simulated and
real-world graphs.
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Discussion - Future Work

▶ Extend PowerEmbed to semi-supervised graph learning tasks
The semi-supervised versions may be helpful in certain sparse graphs, where
the graph eigenvectors are suboptimal in estimating community structure and
the label signals can improve the inference performance.

▶ Consider more powerful versions of PowerEmbed based on
higher-order MPNNs instead of local ones
It remains open to fully understand the relations between graph spatial
information (i.e., symmetries) and graph spectral information (e.g.,
eigenvalues and eigenvectors).
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Thanks!

Q & A


