From Local to Global: Spectral-Inspired Graph Neural Networks

Summer Research, AMS, JHU

Chengyue Huang

September 29, 2022

arXiv preprint(2022) arXiv:2209.12054 Submitted to NeurIPS 2022 GLFrontiers Workshop.

Outline

- **1.** Notations and Preliminaries
- 2. Over-smoothing & Over-squashing Problem
- 3. Related Work
- 4. Our method: PowerEmbed
- 5. Numerical Experiments
- 6. Conclusion and Discussion

▶ Graph G = (V, E, X, Y) with node set *V*, edge set *E*, node input features $X \in \mathbb{R}^{n \times p}$ and node labels $Y \in \mathbb{R}^n$.

- ▶ Graph G = (V, E, X, Y) with node set *V*, edge set *E*, node input features $X \in \mathbb{R}^{n \times p}$ and node labels $Y \in \mathbb{R}^n$.
- ► *A*, *D* are the adjacency matrix and the degree matrix of *G*.

- ▶ Graph G = (V, E, X, Y) with node set *V*, edge set *E*, node input features $X \in \mathbb{R}^{n \times p}$ and node labels $Y \in \mathbb{R}^n$.
- ► *A*, *D* are the adjacency matrix and the degree matrix of *G*.
- ▶ Self-loop: $\tilde{A} = A + I$, $\tilde{D} = D + I$.

- ▶ Graph G = (V, E, X, Y) with node set *V*, edge set *E*, node input features $X \in \mathbb{R}^{n \times p}$ and node labels $Y \in \mathbb{R}^n$.
- ► *A*, *D* are the adjacency matrix and the degree matrix of *G*.
- ▶ Self-loop: $\tilde{A} = A + I$, $\tilde{D} = D + I$.
- Graph Laplacians
 - Random Walk Graph Laplacian: $A_{rw} = \tilde{D}^{-1}\tilde{A}$
 - Symmetric Graph Laplacian: $\bar{A} = \tilde{D}^{-0.5} \tilde{A} \tilde{D}^{-0.5}$

- ▶ Graph G = (V, E, X, Y) with node set *V*, edge set *E*, node input features $X \in \mathbb{R}^{n \times p}$ and node labels $Y \in \mathbb{R}^n$.
- ► *A*, *D* are the adjacency matrix and the degree matrix of *G*.
- ▶ Self-loop: $\tilde{A} = A + I$, $\tilde{D} = D + I$.

Graph Laplacians

- Random Walk Graph Laplacian: $A_{rw} = \tilde{D}^{-1}\tilde{A}$
- Symmetric Graph Laplacian: $\bar{A} = \tilde{D}^{-0.5} \tilde{A} \tilde{D}^{-0.5}$

Graph Topology

- ▶ Homophily: nodes from same classes are more likely to connect.
- ▶ Heterophily: nodes from different classes are more likely to connect.

Preliminaries

Message-Passing Neural Network (MPNN)

A *L*-layer MPNN initializes the embedding $\mathbf{h}^{(0)} = X$. At each iteration *l*, the embedding of node *i* is updated as

$$\mathbf{h}_{i}^{(l)} = \phi\left(\mathbf{h}_{i}^{(l-1)}, \sum_{j \in \mathcal{N}(i)} \psi(\mathbf{h}_{i}^{(l-1)}, \mathbf{h}_{j}^{(l-1)})\right),$$

where ϕ, ψ are the update and message functions, and $\mathcal{N}(i)$ denotes the neighbors of node *i*.

Preliminaries

Message-Passing Neural Network (MPNN)

$$\mathbf{h}_i^{(l)} = \phi\left(\mathbf{h}_i^{(l-1)}, \sum_{j \in \mathcal{N}(i)} \psi(\mathbf{h}_i^{(l-1)}, \mathbf{h}_j^{(l-1)})\right),$$

Graph Convolution Network (GCN): h^(l) = σ(Āh^(l-1)W^(l-1)).
 Simple Graph Convolution (SGC):

$$\mathbf{h}^{(L)} = \bar{A}\mathbf{h}^{(L-1)}W^{(L-1)} = \bar{A}^{L}X(W^{(L-1)}\dots W^{(0)}).$$

where σ is nonlinear activaton function, and $\psi(i,j) = \frac{1}{\sqrt{\deg(i) \deg(j)}} W^{(l-1)} \mathbf{h}_j^{(l-1)}$.

Over-smoothing Problem

• SGC:
$$\mathbf{h}^{(L)} = \bar{A}\mathbf{h}^{(L-1)}W^{(L-1)} = \bar{A}^{L}X(W^{(L-1)}\dots W^{(0)}) = \bar{A}^{L}XW.$$

Over-smoothing

Assume the graph has one connected component. Then

$$\lim_{L\to\infty} A^L_{rw} X = [\mathbf{1}_n; \ldots, \mathbf{1}_n]; \quad \lim_{L\to\infty} \bar{A}^L X = D^{-1}[\mathbf{1}_n; \ldots, \mathbf{1}_n].$$

- Only encodes connected component and degree information;
- ▶ Miss the community structure present in subsequent eigenvectors.

Over-squashing Problem

Over-squashing

Let $h_i^{(L)} = h_i^{(L)}(x_1, \ldots, x_n)$ be the output for node *i* of a *L*-layer MPNN with input features $\{x_i\}_{i=1}^n$. Then the over-squashing effect (for node *i* with respect to node *s*) is measured by the Jacobian $\partial h_i^{(L)} / \partial x_s$.

The smaller the Jacobian value, the more node feature information is "squashed" out in the embedding.

Related Work

 Borrow optimization techniques from training standard neural networks

Adapt normalization techniques from deep learning and propose node-wise, batch-wise, and graph-wise normalization methods.

Related Work

Borrow optimization techniques from training standard neural networks

Adapt normalization techniques from deep learning and propose node-wise, batch-wise, and graph-wise normalization methods.

Inject global information in MPNNs

- Encode global properties of the graph as inputs to MPNNs: using spectral embeddings as node features, sampling anchor nodes, or using other low-pass geometric features.
- Use specific architectural choices: residual connections, attention mechanisms, or transformers.

Related Work

Borrow optimization techniques from training standard neural networks

Adapt normalization techniques from deep learning and propose node-wise, batch-wise, and graph-wise normalization methods.

Inject global information in MPNNs

- Encode global properties of the graph as inputs to MPNNs: using spectral embeddings as node features, sampling anchor nodes, or using other low-pass geometric features.
- Use specific architectural choices: residual connections, attention mechanisms, or transformers.

Modify the graph structures with increasingly complicated architectures

To speed up the long-range information flow: graph sparsification, graph sampling, or localized subgraph extraction.

PowerEmbed

Algorithm 1 PowerEmbed

```
Require: a graph operator S \in \mathbb{R}^{n \times n}, node features X \in \mathbb{R}^{n \times k}, a list P = [X].
Initialize:
```

$$\begin{split} & U(t) = X \\ & \textbf{for t} = \textbf{0 to L-1 do} \\ & \tilde{U}(t+1) = S \, U(t) \, [\text{message-passing}] \\ & U(t+1) = \tilde{U}(t+1) [\tilde{U}(t+1)^\top \tilde{U}(t+1)]^{-1} \, [\text{Normalization}] \\ & \text{Append} \, \frac{U(t+1)}{\|U(t+1)[:,k]\|} \text{ to } P \, [\text{Column normalization}] \\ & \textbf{end for} \\ & \textbf{return } P \end{split}$$

If X is full (column) rank and the k-th and (k + 1)-th eigenvalues of S are distinct, then the last iterate U(t + 1) from PowerEmbed **converges to the top** k **eigenvectors** of S when $t \to \infty$ (up to an orthogonal transformation in O(k)).

PowerEmbed

Figure 1: PowerEmbed extracts both *local* features from the first few iterations and *global* information from the last few iterations (i.e., the top-*k* eigenvectors), which are jointly learned using the inception network.

Numerical Experiments - Baselines

► Unnormalized counterparts: using intermediate representations

- ► SIGN (scalable inception GNN): *A*_{rw}
- SGC(Incep): \overline{A}

Numerical Experiments - Baselines

Unnormalized counterparts: using intermediate representations

- ▶ SIGN (scalable inception GNN): *A*_{rw}
- SGC(Incep): \overline{A}

Spectral methods

Spectral decomposition of the graph A and the covariance matrix XX^{\top} : $A = USU^{\top}, XX^{\top} = \tilde{U}\Sigma\tilde{U}^{\top}$

• ASE:
$$\mathbf{h}^{ASE} = U_k$$

• Cov(X):
$$\mathbf{h}^{\operatorname{cov}(X)} = \tilde{U}_k$$

$$\blacktriangleright A_X: \mathbf{h}^{A_X} = [\mathbf{h}^{ASE}; \mathbf{h}^{\text{cov}(X)}]$$

Numerical Experiments - Baselines

Unnormalized counterparts: using intermediate representations

- SIGN (scalable inception GNN): A_{rw}
- SGC(Incep): \overline{A}

Spectral methods

Spectral decomposition of the graph *A* and the covariance matrix XX^{\top} : $A = USU^{\top}, XX^{\top} = \tilde{U}\Sigma\tilde{U}^{\top}$

- ASE: $\mathbf{h}^{ASE} = U_k$
- Cov(X): $\mathbf{h}^{\operatorname{cov}(X)} = \tilde{U}_k$
- $\blacktriangleright \mathbf{A}_X: \mathbf{h}^{A_X} = [\mathbf{h}^{ASE}; \mathbf{h}^{\text{cov}(X)}]$

Semi-supervised MPNNs

- Benchmark: GCN, GAT (graph attention network)
- Long-range spatial information: GEOM-GCN (geometric GCN), GPR-GNN (generalized page-rank GNN), and GCNII (GCN via initial residual and identity mapping)

Stochastic Block Model (SBM)

A graph A with n nodes is a random SBM graph if it is sampled as

 $A \sim Bernoulli(P), P = ZBZ^{\top},$

where $Z \in \mathbb{R}^{n \times K}$ is a membership matrix such that $Z_{i,k}$ is 1 if the *i*-th node belongs to the *k*-th class, $||Z_{i,\cdot}||_1 = \sum_{k=1}^{K} |Z_{i,k}| = 1$, and $B \in [0, 1]^{K \times K}$ is a full-rank matrix representing the block connection probability.

2B-SBM with Gaussian node features

A two-block symmetric SBM (2B-SBM) is given by:

$$Z_{i,\cdot} = egin{cases} [1,0] & ext{if} \ i \in [n/2] \ [0,1] & ext{otherwise.} \end{array}, \ B = egin{bmatrix} p & q \ q & p \end{bmatrix},$$

where $p, q \in (0, 1), p \neq q$. The node features in block $k \in \{0, 1\}$ are sampled from a *m*-dimensional multivariate Gaussian $\mathcal{N}(\mu_k, \Sigma_k)$ and stored in a node feature matrix $X \in \mathbb{R}^{n \times m}$.

2B-SBM with Gaussian node features

A two-block symmetric SBM (2B-SBM) is given by:

$$Z_{i,\cdot} = egin{cases} [1,0] & ext{if} \ i \in [n/2] \ [0,1] & ext{otherwise.} \end{array}, \ B = egin{bmatrix} p & q \ q & p \end{bmatrix},$$

where $p, q \in (0, 1), p \neq q$. The node features in block $k \in \{0, 1\}$ are sampled from a *m*-dimensional multivariate Gaussian $\mathcal{N}(\mu_k, \Sigma_k)$ and stored in a node feature matrix $X \in \mathbb{R}^{n \times m}$.

2B-SBM model without node features

- 1. $P = \mathbb{E}(A)$ has three eigenvalues, ranked by magnitude as (p+q)/2, (p-q)/2, 0, where 0 has multiplicity n 2.
- **2.** The leading eigenvector is a constant vector, whereas the second eigenvector $u_2(P) = [\mathbf{1}_{n/2}; -\mathbf{1}_{n/2}]$ reveals the community structure.

Convergence of estimated eigenvectors

Settings: 2 Gaussians with mean $\mu_0 = [1, 1], \mu_1 = -\mu_0$, binary node classification, n = 500 nodes, 10/90 train/test split, k = 2.

Figure 2: Convergence of the estimated eigenvectors \hat{u}_i from Algorithm 1 is faster for denser graphs and slower for sparse graphs. We report the angles between the true top-2 eigenspaces and estimated top-2 eigenspaces, averaged over 30 random runs.

Numerical Experiments - Synthetic Graphs Comparison with baselines

Figure 3: PowerEmbed enjoys the same performance guarantee as spectral embedding methods in dense graphs (left), and outperforms spectral methods in sparse graphs (right). Standard MPNNs suffer from over-smoothing (e.g., "GCN-10") and perform much worse in sparse heterophilous graphs (e.g., "GCN-5").

Figure 4: Supplementary to Figure 3 on other baselines: the last iterate of PowerEmbed perform well in dense graphs (both homophily and heterophily), but fail in sparse graphs, similar to spectral embedding ("ASE"). Standard MPNNs suffer from over-smoothing ("SGC-10", "GCN-10"). MPNNs encode long-range information can go deeper ("GCNII", "GPR-GNN"), albeit with higher variance.

Figure 5: Performance w.r.t graph density changes in 2B-SBM model: $p = 1/2 \times X$ -axis, $q = 1/3 \times X$ -axis.

- As density decreases, the performance of "ASE" and Power-last-iter (second row) degrade significantly, while shallow MPNNs degrade more gracefully.
- ▶ Deep MPNNs completely fail, while deep Power-last-iter are more resilient.
- PowerEmbed and SGC(Incep) that use a list of intermediate embeddings perform consistently well in sparse graphs, robust to the choice of number of layers.

Numerical Experiments - Real-world Graphs - Heterophily

Table 1: PowerEmbed outperforms other baselines on graphs with heterophily, particularly on dense heterophilous graphs.

Graph	Squirrel	Chameleon	Wisconsin	Texas	Cornell
Density	38.16	13.8	1.86	1.61	1.53
Homophily	0.22	0.23	0.21	0.11	0.3
#Nodes	5,201	2,277	251	183	183
#Edges	198,493	31,421	466	295	280
#Features	2,089	2,325	1,703	1703	1,703
#Classes	5	5	5	5	5
Power-10	$\textbf{53.53} \pm \textbf{0.41}$	$\textbf{64.98} \pm \textbf{0.55}$	74.71 ± 1.74	73.51 ± 2.05	75.14 ± 2.50
Power(RW)-10	44.58 ± 0.52	61.64 ± 0.43	75.49 ± 1.71	75.68 ± 1.21	72.97 ± 1.58
Power(Lap)-10	42.32 ± 0.37	62.17 ± 0.41	74.71 ± 1.74	74.05 ± 2.10	77.03 ± 1.54
Power-2	52.13 ± 0.55	64.47 ± 0.76	75.29 ± 1.47	$\textbf{79.19} \pm \textbf{1.33}$	76.76 ± 1.63
Power(RW)-2	45.92 ± 0.48	59.67 ± 0.62	77.45 ± 0.89	76.22 ± 1.31	75.41 ± 1.85
Power(Lap)-2	43.06 ± 0.56	60.00 ± 0.62	$\textbf{78.43} \pm \textbf{1.59}$	77.03 ± 1.54	$\textbf{78.30} \pm \textbf{1.58}$
SGC(Incep)-10	37.07 ± 0.55	55.11 ± 0.82	75.29 ± 1.04	75.68 ± 1.95	75.68 ± 1.83
SIGN-10	38.47 ± 0.42	60.22 ± 0.72	75.29 ± 1.45	73.51 ± 2.02	75.68 ± 1.21
SGC(Incep)-2	35.33 ± 0.35	54.19 ± 0.65	77.45 ± 0.89	76.76 ± 1.34	76.22 ± 2.07
SIGN-2	40.97 ± 0.35	60.11 ± 0.97	$\textbf{78.43} \pm \textbf{1.41}$	75.14 ± 2.02	76.76 ± 1.34
Cov(X)	33.12 ± 0.53	44.74 ± 1.00	75.69 ± 1.25	77.30 ± 1.12	77.03 ± 2.27
ASE	41.46 ± 0.62	57.92 ± 0.77	49.41 ± 2.09	58.65 ± 1.79	56.76 ± 0.66
A_X	49.11 ± 0.37	61.97 ± 0.76	77.84 ± 1.24	76.76 ± 1.22	$75.95 \pm \textbf{2.28}$
GCN*	23.96	28.18	45.88	52.16	52.7
GAT*	30.03	42.93	49.41	58.38	54.32
Geom-GCN*	38.14	60.9	64.12	67.57	60.81
GCNII-10	35.23 ± 0.50	49.96 ± 0.46	59.02 ± 1.60	61.08 ± 1.49	48.38 ± 1.64
GPR-GNN-10	34.51 ± 1.45	52.37 ± 3.43	59.41 ± 2.75	58.92 ± 2.98	52.97 ± 3.11

Numerical Experiments - Real-world Graphs - Heterophily

Increasing the number of message-passing layers

Figure 6: PowerEmbed (annotated with "_norm") that adds the normalization step for orthogonality can expressive top-*k* eigenvectors, which avoids over-smoothing and outperforms other baselines, particularly in heterophilous graphs. Baselines include unnormalized counterparts (SIGN denoted as "RW", SGC(Incep) denoted as "Lap"); spectral methods, and semi-supervised MPNNs.

Numerical Experiments - Real-world Graphs - Homophily

Graph	Computers	Photo	Coauthor(CS)	Cora	Citeseer
Density	35.76	31.13	8.93	1.95	1.41
Homophily	0.8	0.85	0.83	0.81	0.74
#Nodes	13,752	7,650	18,333	2,708	3327
#Edges	491,722	238,162	163,788	5,278	4676
#Features	767	745	6,805	1,433	3703
#Classes	10	8	15	7	6
Power-10	90.34 ± 0.22	93.84 ± 0.17	93.93 ± 0.11	81.69 ± 0.50	69.67 ± 0.63
Power(RW)-10	91.14 ± 0.19	94.16 ± 0.20	93.88 ± 0.13	85.03 ± 0.44	73.15 ± 0.54
Power(Lap)-10	91.20 ± 0.14	93.97 ± 0.19	94.26 ± 0.09	84.95 ± 0.40	72.61 ± 0.51
Power-2	90.85 ± 0.15	94.04 ± 0.21	94.32 ± 0.11	81.23 ± 0.52	72.03 ± 0.41
Power(RW)-2	$\textbf{91.43} \pm \textbf{0.13}$	94.56 ± 0.19	94.30 ± 0.08	83.56 ± 0.44	72.62 ± 0.48
Power(Lap)-2	91.33 ± 0.15	94.58 ± 0.21	94.75 ± 0.09	83.52 ± 0.27	73.27 ± 0.75
SGC(Incep)-10	90.61 ± 0.16	94.65 ± 0.18	94.44 ± 0.10	84.89 ± 0.71	73.39 ± 0.62
SIGN-10	90.65 ± 0.18	94.63 ± 0.25	94.05 ± 0.13	85.45 ± 0.32	72.78 ± 0.51
SGC(Incep)-2	90.97 ± 0.17	94.47 ± 0.22	94.54 ± 0.08	83.74 ± 0.53	72.47 ± 0.61
SIGN-2	90.89 ± 0.20	$\textbf{94.59} \pm \textbf{0.19}$	94.09 ± 0.12	83.92 ± 0.43	73.27 ± 0.53
Cov(X)	82.42 ± 0.14	89.45 ± 0.26	91.70 ± 0.15	69.24 ± 0.56	66.79 ± 0.62
ASE	77.61 ± 0.20	85.84 ± 0.22	75.24 ± 0.21	72.84 ± 0.48	51.73 ± 1.67
A_X	89.97 ± 0.21	94.22 ± 0.22	93.69 ± 0.13	80.89 ± 0.56	69.84 ± 0.71
GCN*	90.49	93.91	93.32	85.77	73.68
GAT*	-	-	-	86.37	74.32
Geom-GCN*	-	-	-	84.93	75.14
GCNII-10	90.75 ± 0.16	93.86 ± 0.18	94.32 ± 0.26	84.14 ± 0.47	72.17 ± 0.66
GPR-GNN-10	87.62 ± 0.85	93.52 ± 0.39	94.81 ± 0.27	85.77 ± 0.67	73.22 ± 0.73

Table 2: PowerEmbed achieves competitive performance as other MPNN baselines.

Conclusion

• Augment the MPNN with a simple normalization step Express the top-*k* eigenvectors of the graph operator, which is agnostic to the graph topology (homophoily or heterophily).

Conclusion

- Augment the MPNN with a simple normalization step Express the top-k eigenvectors of the graph operator, which is agnostic to the graph topology (homophoily or heterophily).
- Couple PowerEmbed with an inception network Learn the rich representations that interpolate from *local* message-passing features to *global* spectral information, which provably avoids *over-smoothing* and *over-squashing*.

Conclusion

- Augment the MPNN with a simple normalization step Express the top-k eigenvectors of the graph operator, which is agnostic to the graph topology (homophoily or heterophily).
- ► Couple PowerEmbed with an inception network Learn the rich representations that interpolate from *local* message-passing features to *global* spectral information, which provably avoids *over-smoothing* and *over-squashing*.
- Perform comprehensive studies to show PowerEmbed's superiority Demonstrate numerically that our simple techniques achieve competitive performance for node classification in a wide range of simulated and real-world graphs.

Discussion - Future Work

Extend PowerEmbed to semi-supervised graph learning tasks The semi-supervised versions may be helpful in certain sparse graphs, where the graph eigenvectors are suboptimal in estimating community structure and the label signals can improve the inference performance.

Discussion - Future Work

- Extend PowerEmbed to semi-supervised graph learning tasks The semi-supervised versions may be helpful in certain sparse graphs, where the graph eigenvectors are suboptimal in estimating community structure and the label signals can improve the inference performance.
- Consider more powerful versions of PowerEmbed based on higher-order MPNNs instead of local ones

It remains open to fully understand the relations between graph spatial information (i.e., symmetries) and graph spectral information (e.g., eigenvalues and eigenvectors).

